Math 180 Discussion Problems

Thursday, October 9, 2014

1. Have you reviewed trigonometry?
(a) Sketch the graph of the sine function on the interval $[-2 \pi, 2 \pi]$.
(b) What is the domain of the function $\sin ^{-1}$? (More than one possible answer depending on exactly which function you call $\sin ^{-1}$. Just give one reasonable answer.)
(c) Is the following argument correct? If not, fix it.

$$
\sin ^{-1}(1)=\sin ^{-1}\left(\frac{1}{2}\right)+\sin ^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{6}+\frac{\pi}{6}=\frac{\pi}{3}
$$

2. How about logarithms?
(a) Is the following argument correct? If not, fix it.

$$
\ln \left(x^{2} / y\right)=\ln \left(x^{2}\right)-\ln (y)=2 \ln (x)-\ln (y)
$$

(b) Sketch a graph of the curve

$$
\ln \left(x^{2} / y\right)=0
$$

Be careful about the domain!
3. If $f(x)=\sin ^{2}(x)$, what is $f^{-1}(x)$?
4. If $g(x)=x^{x}$, what is $g^{\prime}(x)$?
5. Find all points at which the curve $x^{2}-y^{2}=x^{4}$ has horizontal or vertical tangents.
6. (a) If $x=\sin y$, express $\frac{d y}{d x}$ in terms of x.
(b) Simplify your answer to part (a) to eliminate all the trig functions. (Draw a triangle.)
7. Evaluate the limit, justifying your answer completely.

$$
\lim _{x \rightarrow \infty} \frac{\sin (x)-\sqrt{4 x^{2}-1}}{x-\cos ^{2}(x)}
$$

